I D
× COMMENTARYCOVER STORYIN THE NEWSNEWSFRONTS
The Balanced Burner
Modern combustion technologies help processors safely meet emissions standards, while…
CHEMENTATOR + Show More BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILEENGINEERING PRACTICEEQUIPMENT & SERVICESFOCUSNEW PRODUCTS + Show More

Comment Environment, Health, Safety & Security

DeNOx catalyst operates at lower temperatures

By Tetsuo Satoh |

Professor Toru Murayama at Tokyo Metropolitan University (Tokyo, Japan; www.haruta-masatake.ues.tmu.ac.jp), in collaboration with Chugoku Electric Power Co., Inc., has developed a vanadium oxide catalyst that removes oxides of nitrogen (NOx) from fluegas generated by the combustion of heavy fuel oil and coals. The developed V2O5 catalyst has a high specific-surface area of 40 m2/g, which enables the deNOx reaction to take place at a temperature of around 150°C. This is considerably lower than the 400°C required by existing catalysts (0.5–2 wt.% V2O5, with surface areas of 2.5 m2, deposited on a TiO2 system). The lower temperature operation is also expected to enable the catalyst to have a longer lifetime, thereby lengthening the time required for changeout. Conventional catalysts operating at the higher temperatures need to be changed every 2–4 years, which costs several million dollars per changeout, says Murayama. The new catalyst is fabricated to have a large surface area by calcination of ammonium metavanadate precursor with oxalic acid. The catalyst is composed solely of V2O5, and shows a 90% selectivity for the reduction of NOx. It is suitable for low-temperature deNOx of fluegas when poisons, such as sulfur dioxide, have…
Related Content
A catalyst that mimics enzymes
A research team from the University of New South Wales (Sydney, Australia; www.unsw.edu.au) and Ruhr-Universität Bochum (Bochum, Germany; www.ruhr-universität-bochum.de) has…

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
Non-Contacting Gas Sensors Minimize the Risk of Corrosion to Plant Equipment.
5 ways to Optimize Production of Polymers and Intermediate Petrochemicals
7 Ways to Achieve Process Safety in Chemical Production
Five Reasons Why Chemical Companies Are Switching to Tunable Diode Laser Analyzer Technology
Simplify sensor handling and maintenance with ISM

View More

Live chat by BoldChat