I D
× COMMENTARYCOVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More
Chemical Engineering MagazineChementator Briefs
Depolymerization Last month, DuPont Teijin Films Ltd. (DTF; Contern, Luxembourg;…
BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILEENVIRONMENTAL MANAGEREQUIPMENT & SERVICESFOCUSNEW PRODUCTS + Show More SHOW PREVIEWS

Comment Environment, Health, Safety & Security

DeNOx catalyst operates at lower temperatures

By Tetsuo Satoh |

Professor Toru Murayama at Tokyo Metropolitan University (Tokyo, Japan; www.haruta-masatake.ues.tmu.ac.jp), in collaboration with Chugoku Electric Power Co., Inc., has developed a vanadium oxide catalyst that removes oxides of nitrogen (NOx) from fluegas generated by the combustion of heavy fuel oil and coals. The developed V2O5 catalyst has a high specific-surface area of 40 m2/g, which enables the deNOx reaction to take place at a temperature of around 150°C. This is considerably lower than the 400°C required by existing catalysts (0.5–2 wt.% V2O5, with surface areas of 2.5 m2, deposited on a TiO2 system). The lower temperature operation is also expected to enable the catalyst to have a longer lifetime, thereby lengthening the time required for changeout. Conventional catalysts operating at the higher temperatures need to be changed every 2–4 years, which costs several million dollars per changeout, says Murayama. The new catalyst is fabricated to have a large surface area by calcination of ammonium metavanadate precursor with oxalic acid. The catalyst is composed solely of V2O5, and shows a 90% selectivity for the reduction of NOx. It is suitable for low-temperature deNOx of fluegas when poisons, such as sulfur dioxide, have…
Related Content

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
Reduce the Risk of Corrosion in Fertilizer Production
3 Reasons to Automate Sensor Cleaning
Protect Your Turbines from Silica with a Low Maintenance Analyzer
Your Off-line pH Measurements Might Be Misleading and Costing You a Lot of Money
Reduce Explosion Risk in 2 Seconds with In Situ Oxygen Analysis

View More

Live chat by BoldChat