ID
× COMMENTARYCOVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More
Chemical Engineering MagazineChementator Briefs
C2H2 hydrogenation Last month, Clariant (Munich, Germany; www.clariant.com) launched OleMax…
BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILEEQUIPMENT & SERVICESFOCUS
6. Honeywell-MicroPressureMPRSeriesSensorFocus on Sensors
Hygienic optical sensor measures dissolved oxygen The Memosens COS81D hygienic…
NEW PRODUCTS + Show More SHOW PREVIEWS

Comment PDF Environment, Health, Safety & Security

Sizing Pressure-Relief Valves for Two-Phase Flow

By Guofu Chen, Joule Processing LLC |

Several methods are available for sizing two-phase pressure-relief valves (PRVs). Here, the API 520 homogeneous direct integration method is compared to a potentially simpler alternative that does not require integration Two-phase pressure-relief valves (PRVs) have been studied by many researchers. Among the many published works on this subject is the American Petroleum Institute (API) Standard 520 on the Sizing, Selection and Installation of Pressure-Relieving Devices. Part 1 of the API 520 standard (9th edition) describes three methods to size two-phase PRVs, which are described in detail in Annex C. The first method is the HDI (homogeneous direct integration) method (section C.2.1), which has wide applicability. The second method is known as the Omega method for two-phase flashing or non-flashing flow (described in section C.2.2). The third is the Omega method for sub-cooled liquid (described in section C.2.3). This article examines the HDI method and compares it to an easier alternative method, known as HD (homogeneous direct without integration), which is proposed here. The HD method requires less modeling effort than the HDI method and eliminates the need for integration, but the two methods arrive at the same results, as shown…
Related Content
Embracing a circular economy
Last month, for the first time, U.S. plastic resin producers publicly committed to measurable targets toward complete recovery and recycling…
DeNOx catalyst operates at lower temperatures
Professor Toru Murayama at Tokyo Metropolitan University (Tokyo, Japan; www.haruta-masatake.ues.tmu.ac.jp), in collaboration with Chugoku Electric Power Co., Inc., has developed…

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
ABB Ability™ technology to transform BASF rotating equipment into intelligent machinery and improve uptime and reliability
Detect and correct anomalies early in your batch processes
ABB at ACHEMA 2018
The Future of Project Execution
Digitalization: What does it deliver today… and tomorrow?

View More

Live chat by BoldChat