I D
× COMMENTARYEDITOR'S PAGECOVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More
Chemical Engineering MagazineChementator Briefs
Nanofiltration Toray Industries, Inc. (Tokyo, Japan; www.toray.com) has created what…
BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILEEQUIPMENT & SERVICESFOCUSNEW PRODUCTS + Show More SHOW PREVIEWS

Comment Processing & Handling

A little gold can reduce the Pt loading in fuel cells

By Paul Grad |

A challenge in the development of polymer-electrolyte membrane fuel cells is the durability and electrocatalytic activity of platinum-based electrocatalysts. The sluggishness of the oxygen reduction reaction (ORR) causes the fuel cell performance to be limited by the cathodic reaction, and a high Pt loading is required for the cathode catalyst to achieve good activity for the ORR. Now researchers from the Institute of Bioengineering and Nanotechnology (IBN; Singapore: www.ibn.a-star.edu.sg), led by IBN executive director, professor Jackie Y. Ying, have discovered that by replacing the central part of the catalyst with a gold-copper alloy and leaving just the outer layer in platinum, a superior electrocatalytic activity and excellent stability toward the ORR are achieved. The researchers reported the synthesis of core-shell AuCu@Pt nanoparticles by depositing Pt on preformed AuCu-alloy nanoparticles in oleylamine. The AuCu alloy core has a slightly smaller lattice parameter than Pt, creating a beneficial compressive strain effect on the Pt shell. In contrast, a tensile strain effect would be induced by depositing Pt on a core of Au — which has a larger lattice parameter than Pt — leading to a lower catalytic activity. In…
Related Content

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
How separation processes profit from Industrial Internet of Things (IIoT) solutions
Up to 80% increased production rates in plastic recycling
Higher throughput and purity in sodium bicarbonate production with up to 15% less energy consumption
Help feeding nations with chemical filtering technologies
Not at the forefront of Industry 4.0?

View More

Live chat by BoldChat