I D
× COMMENTARYEDITOR'S PAGECOVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More
Chemical Engineering MagazineChementator Briefs
Nanofiltration Toray Industries, Inc. (Tokyo, Japan; www.toray.com) has created what…
BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILEEQUIPMENT & SERVICESFOCUSNEW PRODUCTS + Show More SHOW PREVIEWS

Comment Processing & Handling

A polymersome that releases its cargo where needed

By Paul Grad |

Several drug delivery systems have been studied involving the encapsulation of molecules in a suitable structure and their transport through the human body. In particular, polymersomes — tiny hollow spheres that enclose a solution — formed using synthetic block copolymers to form a vesicle membrane (with radii from 50 nm to 5 µm, mostly containing an aqueous solution in their core) have been used for encapsulating molecules such as drugs, enzymes, other proteins and peptides, and DNA. Those encapsulated molecules can be transported and released anywhere within the human body. A group led by professor Kyoung Taek Kim from the School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (South Korea; www.unist.ac.kr) has reported what it claims to be the first synthesis of the boroxole-containing styrene monomer and its controlled radical polymerization via the reversible addition-fragmentation and chain transfer (RAFT) method. The group synthesized a series of sugar-responsive block copolymers that self-assembled to form polymersomes in water. It demonstrated that the polymersomes of these block copolymers could encapsulate water-soluble cargo, such as insulin, which could…
Related Content

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
How separation processes profit from Industrial Internet of Things (IIoT) solutions
Up to 80% increased production rates in plastic recycling
Higher throughput and purity in sodium bicarbonate production with up to 15% less energy consumption
Help feeding nations with chemical filtering technologies
Not at the forefront of Industry 4.0?

View More

Live chat by BoldChat