I D
× COMMENTARYCOVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILEEQUIPMENT & SERVICESFOCUSNEW PRODUCTS + Show More

Comment PDF Processing & Handling

A renewable, green oxidation catalyst

By Tetsuo Satoh |

Scientists from the National Institute of Advanced Industrial Science and Technology (AIST; Tsukuba, Japan; www.aist.go.jp), in collaboration with Tokyo University of Science and Panchakot Mahavidyalaya University, have demonstrated that a nickel-complex-type organic nanotube (Ni-ONT), developed by AIST, can catalyze oxidation reactions for producing industrial chemicals. For example, the researchers have demonstrated that Ni-ONT dispersed in aqueous hydrogen peroxide catalyzes oxidation reactions at room temperature, producing 2,3,6-trimethylphenol (TMP); trimethylquinone (TMQ; an intermediate for making vitamin E); benzophenone (an ultraviolet absorbing agent); tetralone (an agrochemical intermediate); and epoxides (for photo-curing of resins). A selectivity of more than 90% was achieved for TMQ, and a 55–60% selectivity for TMP. The Ni-ONT did not lose its activity after at least five cycles with recycled catalysts. Unlike traditional oxidation reactions, which use heavy metal catalysts, organic peroxides or high temperatures, those carried out with Ni-ONT occur at room temperature with hydrogen peroxide, without producing hazardous or halogenated wastes. Ni-ONT is also a solid in aqueous solutions, so it can be simply filtered…
Related Content

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
Make your chemical centrifuge ready for the future
Securing the availability of chemical processes through a long-term partnership
Metering gas in biogas plants
The Big 6 level measurement technologies: Where to use them and why
Minimizing particle breakage and mother liquor residue in technical salts production

View More