I D
× COMMENTARYEDITOR'S PAGECOVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More
Chemical Engineering MagazineChementator Briefs
Nanofiltration Toray Industries, Inc. (Tokyo, Japan; www.toray.com) has created what…
BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILEEQUIPMENT & SERVICESFOCUSNEW PRODUCTS + Show More SHOW PREVIEWS

Comment PDF Separation Processes

Facts at your Fingertips: Air Separation Processes

By Scott Jenkins |

The components of air (Table 1), especially nitrogen (N2) and oxygen (O2), are critical for many modern industrial processes. Primary metals production, chemical manufacturing, gasification processes, clay, glass and concrete production, welding and other processes depend on O2 from air, while the chemical, petroleum-refining and electronics industries utilize N2 for its inert properties. In addition, liquid N2 is used for cryogenic grinding, freeze-drying, cryogenic storage of biological materials, food freezing and other applications. Argon (Ar) is used as an inert material in welding, steelmaking, heat-treating and electronics manufacturing. This one-page reference discusses the main methods by which these common industrial gases can be derived from air.   Air separation approaches Separation of air into its constituent parts for industrial use can be divided into two main categories: cryogenic air separation and non-cryogenic processes. Cryogenic air separation processes produce N2, O2 and Ar as either gases or liquids by employing low-temperature distillation to separate the fluids. Cryogenic separation processes are most commonly used when high-purity products and high production rates are required. Non-cryogenic processes…
Related Content
  • Mariam Rahal

    THE METHOD OF COLLECTING NITROGEN NOT CLEAR FOR ME CAN YOU DISCUS MORE BECAUSE i INTERESTED IN THIS PROBLEM


Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
How separation processes profit from Industrial Internet of Things (IIoT) solutions
Up to 80% increased production rates in plastic recycling
Higher throughput and purity in sodium bicarbonate production with up to 15% less energy consumption
Help feeding nations with chemical filtering technologies
Not at the forefront of Industry 4.0?

View More

Live chat by BoldChat