I D
× COMMENTARYCOVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More
Chementator Briefs
Ultrathin membrane Researchers led by professors Hideto Matsuyama and Tomohisa…
BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILEEQUIPMENT & SERVICESFOCUS
Focus on Sensors
Wireless transmitters save on level sensor installation Reduce the cost…
NEW PRODUCTS + Show More SHOW PREVIEWS

Comment PDF Processing & Handling

Technology Profile: Bio-acrylic acid production from glucose

By Intratec Solutions |

This column is based on “Bio-Acrylic Acid Production from Glucose – Cost Analysis,” a report published by Intratec. It can be found at: www.intratec.us/analysis/acrylic-acid-production-cost. Acrylic acid is a moderately strong carboxylic acid, primarily used in the production of emulsion and solution polymers. On a commercial scale, acrylic acid is mainly produced from the oxidation of propylene or propane derived from petroleum or natural gas — both nonrenewable fossil carbon-based starting materials. In recent years, significant research and development efforts have been made toward manufacturing acrylic acid from natural renewable starting materials, such as glucose or molasses originating from biomass, or from glycerol, a byproduct from biofuels production. The process The following paragraphs describe bio-based acrylic acid production from glucose syrup, where the glucose is initially fermented to generate 3-hydroxypropionic acid (3-HPA), which is then dehydrated to produce acrylic acid. Figure 1 presents a simplified flow diagram of the process. Figure 1. This diagram shows a process for producing bio-acrylic acid from glucose[/caption] Fermentation. The culture media used in the pre-fermentation and in the fed-batch…
Related Content

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
Improving chemical production processes with IIoT and AI technologies
New filtration technology for highly corrosive media
PTA production: Lowering OPEX without compromising on quality
Sure that zero means zero in your zero-liquid discharge (ZLD) process?
How separation processes profit from Industrial Internet of Things (IIoT) solutions

View More

Live chat by BoldChat