I D
× COMMENTARYCOVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More
Chemical Engineering MagazineChementator Briefs
Sulfur control Preferential Oxidation Catalysis — a new catalytic solution…
BUSINESS NEWS
Chemical Engineering MagazineBusiness News
Plant Watch Perstorp will construct new plant for sodium formate…
TECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILEEQUIPMENT & SERVICESFOCUSNEW PRODUCTS + Show More SHOW PREVIEWS

Comment PDF Environment, Health, Safety & Security

Burner Design for Fuel Flexibility and Efficiency

By David Littlejohn, Robert Cheng, Peter Therkelsen, Kenneth Smith and Sy Ali Lawrence Berkeley National Laboratory |

Combustion provides heat for many industrial processes and accounts for over 80% of the power used by turbines to generate electricity. Over the past several decades, regulatory action and concerns over environmental air pollutants, such as oxides of nitrogen (NOx), have pushed industrial process designers to develop burners that lower pollutant emissions and prompted manufacturers to switch to cleaner-burning fuels. Going forward, industrial combustion — both for process heat and power generation — will be characterized by an increasingly diverse fuel supply and a greater need to reduce pollutants and carbon dioxide emissions. As substitutes to natural gas, coal and oil, alternative fuels are being considered by the chemical process industries (CPI) for power generation and process heating. These include low-heat-content fuels such as landfill gas, biogas and synthesis gas (syngas), as well as hydrogen. To take full advantage of these alternative fuels, CPI engineers are exploring a number of approaches aimed at reducing carbon emissions, improving fuel flexibility and increasing efficiency for combustion systems. A key part of the effort is the development of combustor designs that operate effectively using a range of fuels…
Related Content
Focus on Air Pollution Control
These ceramic filters have catalysts built-in The BisCat filter system (photo) combines the three process stages of de-dusting, separation of…

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
Quadruple Sensor Lifetime with a Retractable Housing
Minimizing Explosion Risk Where Other Solutions Cannot
Minimizing Corrosion with Fast, Robust Gas Analysis
Lower Measurement Point Costs with Automatic pH Sensor Cleaning
Reduce the Risk of Corrosion in Fertilizer Production

View More

Live chat by BoldChat