I D
× COMMENTARY
Digitalization Game ChangersGame Changers
The technologies associated with the Industrial Internet of Things, and…
COVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More
Chemical Engineering MagazineChementator Briefs
ANG fueling station Ingevity (North Charleston, S.C.; www.ingevity.com) has completed…
BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILESOLIDS PROCESSINGEQUIPMENT & SERVICESFOCUSNEW PRODUCTS + Show More SHOW PREVIEWS

Comment PDF Environment, Health, Safety & Security

Burner Design for Fuel Flexibility and Efficiency

By David Littlejohn, Robert Cheng, Peter Therkelsen, Kenneth Smith and Sy Ali Lawrence Berkeley National Laboratory |

Combustion provides heat for many industrial processes and accounts for over 80% of the power used by turbines to generate electricity. Over the past several decades, regulatory action and concerns over environmental air pollutants, such as oxides of nitrogen (NOx), have pushed industrial process designers to develop burners that lower pollutant emissions and prompted manufacturers to switch to cleaner-burning fuels. Going forward, industrial combustion — both for process heat and power generation — will be characterized by an increasingly diverse fuel supply and a greater need to reduce pollutants and carbon dioxide emissions. As substitutes to natural gas, coal and oil, alternative fuels are being considered by the chemical process industries (CPI) for power generation and process heating. These include low-heat-content fuels such as landfill gas, biogas and synthesis gas (syngas), as well as hydrogen. To take full advantage of these alternative fuels, CPI engineers are exploring a number of approaches aimed at reducing carbon emissions, improving fuel flexibility and increasing efficiency for combustion systems. A key part of the effort is the development of combustor designs that operate effectively using a range of fuels…
Related Content
Focus on Air Pollution Control
These ceramic filters have catalysts built-in The BisCat filter system (photo) combines the three process stages of de-dusting, separation of…

Mettler Toledo

Tunable Diode Laser Spectroscopy in Critical Applications

Accurate and continuous O2 determination plays a pivotal role in achieving safety and process reliability in a wide range of manufacturing processes. Harsh process conditions and maintenance requirements of sampling and conditioning systems can present…

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
Reduce Explosion Risk in 2 Seconds with In Situ Oxygen Analysis
Tunable Diode Laser Spectroscopy in Critical Applications
Non-Contacting Gas Sensors Minimize the Risk of Corrosion to Plant Equipment.
5 ways to Optimize Production of Polymers and Intermediate Petrochemicals
7 Ways to Achieve Process Safety in Chemical Production

View More

Live chat by BoldChat