I D
× COMMENTARY
Digitalization Game ChangersGame Changers
The technologies associated with the Industrial Internet of Things, and…
COVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More
Chemical Engineering MagazineChementator Briefs
ANG fueling station Ingevity (North Charleston, S.C.; www.ingevity.com) has completed…
BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILESOLIDS PROCESSINGEQUIPMENT & SERVICESFOCUSNEW PRODUCTS + Show More SHOW PREVIEWS

Comment

Ceramic-membrane technology simplifies steam methane reforming

By Gerald Ondrey |

A new type of steam-reforming system that produces — in a single step — purified, compressed hydrogen from methane has been developed by a team of scientists from CoorsTek Membrane Sciences AS (Oslo; www.coorstek.com), the University of Oslo (both Norway; www.uio.no) and the Institute of Chemical Technology (Valencia, Spain; http://itq.upv-csic.es). In a laboratory-scale system, the so-called protonic membrane reformer (PMR) has been shown to achieve complete conversion of CH4 into two separate streams: wet CO2 and H2 with impurity levels of less than 4 parts per million (ppm) — clean enough for fuel-cell operation. The system has an overall energy efficiency of more than 87%. As described in a recent issue of Nature Energy, the PMR is a tubular electrochemical cell with a proton-conducting electrolyte (BZCY: BaZr0.8-x-yCexYyO3-δ) sandwiched between two porous electrodes of BZCY and Ni. Methane and steam pass through the center of the reformer tube at a temperature of 700–850°C and a pressure of 5–30 bars. By applying a voltage across the electrolyte, H2 is selectively extracted from the inner reforming chamber by migrating through the proton-conducting membrane to generate pure H2 on the other side of the membrane. The…
Related Content

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
Reduce Explosion Risk in 2 Seconds with In Situ Oxygen Analysis
Tunable Diode Laser Spectroscopy in Critical Applications
Non-Contacting Gas Sensors Minimize the Risk of Corrosion to Plant Equipment.
5 ways to Optimize Production of Polymers and Intermediate Petrochemicals
7 Ways to Achieve Process Safety in Chemical Production

View More

Live chat by BoldChat