I D
× COMMENTARYEDITOR'S PAGECOVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More
Chemical Engineering MagazineChementator Briefs
Nanofiltration Toray Industries, Inc. (Tokyo, Japan; www.toray.com) has created what…
BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILEEQUIPMENT & SERVICESFOCUSNEW PRODUCTS + Show More SHOW PREVIEWS

Comment PDF

Ethanol from Sugarcane

By Chemical Engineering |

Ethanol is a widely used commodity chemical with several applications, including use as a solvent and as a gasoline blendstock in the fuel market. Globally, the major portion of ethanol production is based on the fermentation of sugars from crop feedstocks, such as sugarcane, corn, cellulosic material and others. World fuel ethanol production is about 85 billion liters annually, with 60% resulting from corn ethanol production in the U.S., and another 25% from sugarcane ethanol production in Brazil. In view of current environmental issues, including greenhouse gas emissions, fermentation-based ethanol is considered an alternative to fossil fuels since it originates from renewable resources. The process Ethanol from sugarcane is traditionally produced by yeast fermentation of sugarcane molasses. Commonly, raw sugar is obtained as a co-product, through crystallization of sugarcane raw juice. The major process steps in sugarcane ethanol production (Figure 1) are as follows: FIGURE 1. Traditional ethanol production process from sugarcane Milling. Sugarcane is delivered from the field to the factory, where it is weighed, cut and shredded before being conducted to the mills, where the raw cane juice is extracted. Sugarcane bagasse is obtained…
Related Content
Liquid Mixing in Stirred Tanks
A method of quantifying mixing according to a mixing index is presented. This index can evaluate and predict mixing intensity…

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
How separation processes profit from Industrial Internet of Things (IIoT) solutions
Up to 80% increased production rates in plastic recycling
Higher throughput and purity in sodium bicarbonate production with up to 15% less energy consumption
Help feeding nations with chemical filtering technologies
Not at the forefront of Industry 4.0?

View More

Live chat by BoldChat