I D
× COMMENTARYCOVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More
Chementator Briefs
Natural wax coating Researchers from Aalto University (Finland; www.aalto.fi) have…
BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILEENVIRONMENTAL MANAGEREQUIPMENT & SERVICESFOCUSNEW PRODUCTS + Show More

Comment PDF

Freeze-drying based on fine-spray produces uniform microspheres

By Scott Jenkins |

A freeze-drying system recently commercialized by ULVAC, Inc. (Chigasaki, Japan; www.ulvac.co.jp) produces spherical particles by spraying a solution into a vacuum chamber. The approach has numerous advantages over conventional freeze-drying, and can be used for generating dry powders in the pharmaceutical, food and electronics industries. The system works by spraying a solution through a specialized nozzle into a vacuum chamber (diagram) with pressures in the range of 5–30 Pa. As the raw material enters the chamber, it disperses to form droplets of uniform size, since air resistance is virtually zero inside the vacuum chamber. As water evaporates from the droplets, latent heat is removed, and the particles self-freeze into a powder whose size can be controlled within the range of 100–400 µm. The frozen particles settle onto a heated shelf, where the remaining water is removed and product collected. The patented vacuum chamber and heated collection apparatus is designed to reduce drying times and collect over 95% of the dry material. Among the major advantages of the fine-spray technology is the direct production of a uniform powder, eliminating the need to crush dried material before final packaging. Conventional…
Related Content

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
Improving chemical production processes with IIoT and AI technologies
New filtration technology for highly corrosive media
PTA production: Lowering OPEX without compromising on quality
Sure that zero means zero in your zero-liquid discharge (ZLD) process?
How separation processes profit from Industrial Internet of Things (IIoT) solutions

View More

Live chat by BoldChat