I D
× COMMENTARYCOVER STORYIN THE NEWSCHEMENTATOR + Show More BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILESOLIDS PROCESSINGENGINEERING PRACTICEENVIRONMENTAL MANAGEREQUIPMENT & SERVICESFOCUS
Focus on Valves
    A new motorized control valve for the semiconductor…
NEW PRODUCTS + Show More

Comment Processing & Handling

Gas-Liquid Mixing: Physical Considerations

By Chemical Engineering |

Gas-liquid reactors in the chemical process industries (CPI) have increasingly been designed to handle larger manufacturing scales. Since gas-liquid reactors can represent substantial capital and operating costs for the user, optimizing mixing and maximizing productivity are critical. The need for efficiency at larger scales places more importance on understanding the physical phenomena of mixing and more of a burden on equipment design. Physical demands of mixing A number of complex physical phenomena must be considered to achieve optimal function of mixing equipment in cases where gaseous and liquid substances interact. For a gas-liquid reaction to occur, a low-density compressible gas must be dispersed into a much denser liquid with a reasonably long contact time. Usually, significant turbulence must be induced into the liquid phase to aid mass transfer and reaction. In addition, rapid movement of the liquid phase is often required at heat-transfer surfaces, which are often removed by some distance from mixing impellers. In some cases, the liquid phase can contain a significant level of solids, which must be kept suspended. Gas-liquid reactors commonly consist of large pressure vessels with sophisticated internal components for…
Related Content
Optimized Mixing
Improved equipment and controls, as well as continuous mixing, improve efficiency Optimization is imperative for today’s chemical processors who strive…
Beyond Simple Mixing
Five different examples are presented in which specialty mixers are used to perform tasks more efficiently than conventional approaches Specialty…
Liquid Mixing in Stirred Tanks
A method of quantifying mixing according to a mixing index is presented. This index can evaluate and predict mixing intensity…

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
Metering gas in biogas plants
Wet process analyzer for FPD and solar cell manufacturing for semi-conductors
Fluidized bed drying and cooling for temperature-sensitive polymers and plastics
CoriolisMaster: The SmartSensor solution
The Big 6 flowmeter technologies: Where to use them and why

View More