I D
× COMMENTARY
Digitalization Game ChangersGame Changers
The technologies associated with the Industrial Internet of Things, and…
COVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More
Chemical Engineering MagazineChementator Briefs
ANG fueling station Ingevity (North Charleston, S.C.; www.ingevity.com) has completed…
BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILESOLIDS PROCESSINGEQUIPMENT & SERVICESFOCUSNEW PRODUCTS + Show More SHOW PREVIEWS

Comment Separation Processes

These highly selective membranes mimic biological ion channels

By Mary Page Bailey |

New membranes developed at Tufts University (Medford, Mass.; www.tufts.edu) can effectively separate similar chemicals based on not only size but on electrostatic charge. “Currently, there are no commercial membranes that are designed to separate organic molecules of similar size but different chemical structure,” explains Ayse Asatekin, a chemical and biological engineering professor at Tufts. The membranes are created by coating a specialty polymer solution — a random copolymer of fluorinated methacrylate and methacrylic acid dissolved in methanol — onto a commercially available porous membrane. The polymer is synthesized in a single step via free-radical polymerization, which is an easily scalable process, explains Asatekin. She believes that this membrane-preparation process could be readily scaled up and adapted for commercial roll-to-roll manufacturing processes, enabling it to be installed into existing production sites with little modification. What sets these membranes apart is the self-assembly of the polymer in solution to create micelles that form charged nanopores 1–3 nm in size (diagram). This enables a functionalized nanostructure that mimics biological pores, such as the ion channels that regulate the transport…
Related Content

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
Reduce Explosion Risk in 2 Seconds with In Situ Oxygen Analysis
Tunable Diode Laser Spectroscopy in Critical Applications
Non-Contacting Gas Sensors Minimize the Risk of Corrosion to Plant Equipment.
5 ways to Optimize Production of Polymers and Intermediate Petrochemicals
7 Ways to Achieve Process Safety in Chemical Production

View More

Live chat by BoldChat