I D
× COMMENTARY
Digitalization Game ChangersGame Changers
The technologies associated with the Industrial Internet of Things, and…
COVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More
Chemical Engineering MagazineChementator Briefs
ANG fueling station Ingevity (North Charleston, S.C.; www.ingevity.com) has completed…
BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILESOLIDS PROCESSINGEQUIPMENT & SERVICESFOCUSNEW PRODUCTS + Show More SHOW PREVIEWS

Comment PDF Separation Processes

Making fine particles of inhalable drugs

By Chemical Engineering |

A team from the School of Chemical Sciences and Engineering, at the University of New South Wales (Sydney, Australia; www.unsw.edu.au), has developed a process for the micronization of insulin called Arise (Atomized Rapid Injection for Solvent Extraction). According to BioParticle Technologies Pty. Ltd. (BPT; Sydney; www.bioparticletechnologies.com), the company marketing Arise, the technology offers several advantages over other existing supercritical fluid technologies. The team leader, professor Neil Foster who invented the Arise process, says “this technology allows us to shrink the particle size of existing drugs and make them better suited for pulmonary delivery.” Arise is a supercritical fluid (SCF) precipitation process employing the energized rapid release of organic solutions and the anti-solvent capability of supercritical CO2 for the precipitation of pharmaceutical compounds from organic solvents. It exploits a pressure differential and rapid injection to atomize organic solutions into a vessel containing supercritical CO2 without using capillary nozzles. This results in a more homogeneous distribution of organic solution for precipitation to occur within the entire vessel containing the supercritical CO2. The…
Related Content
SK Chemicals chooses GEA Messo PT technology  
GEA Messo PT’s (Hertogenbosch, the Netherlands; www.gea-messo-pt.com) proprietary crystallization technology was chosen by SK Chemicals (Gyeonggi-do, Korea; www.skchemicals.com) for its…
A Clearer View Of Crystallizers
Crystallization is a key purification technique for various sectors of the chemical process industries (CPI). Several approaches for industrial crystallization…
MSMPR Crystallization equipment
Crystallization is a key purification technique for various sectors of the chemical process industries (CPI). Several approaches for industrial crystallization…
Polysilicon Production
A rapid and ongoing expansion of polysilicon production capacity will likely generate an oversupply for the next several years, driving…

Mettler Toledo

Reduce Explosion Risk in 2 Seconds with In Situ Oxygen Analysis

Changing to GPro® 500 in situ TDL sensors has reduced measurement time from 20 seconds to 2, and almost eliminated analyzer maintenance.

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
Reduce Explosion Risk in 2 Seconds with In Situ Oxygen Analysis
Tunable Diode Laser Spectroscopy in Critical Applications
Non-Contacting Gas Sensors Minimize the Risk of Corrosion to Plant Equipment.
5 ways to Optimize Production of Polymers and Intermediate Petrochemicals
7 Ways to Achieve Process Safety in Chemical Production

View More

Live chat by BoldChat