I D
× COMMENTARY
Digitalization Game ChangersGame Changers
The technologies associated with the Industrial Internet of Things, and…
COVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More
Chemical Engineering MagazineChementator Briefs
ANG fueling station Ingevity (North Charleston, S.C.; www.ingevity.com) has completed…
BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILESOLIDS PROCESSINGEQUIPMENT & SERVICESFOCUSNEW PRODUCTS + Show More SHOW PREVIEWS

Comment Processing & Handling

Metabolic engineering makes plants produce more oils

By Paul Grad |

A research team from the University of Western Australia (Perth; www.uwa.edu.au), led by professor Dongke Zhang, has pioneered the application of higher plants for new-generation biofuel production. Metabolic engineering of Arabidopsis thaliana — a small flowering plant native to Europe and Asia, which was the first plant to have its genome sequenced — caused the plant to produce triterpene hydrocarbons. The team cloned a gene — a triterpene methyltransferase 3 (BbTMT-3) — from the microalga Botryococcus braunii and transferred it to Arabidopsis thaliana. The microalga can produce extracellular oil in the form of triterpenoid hydrocarbons up to 40 wt.% (dry). These hydrocarbons with chain lengths of C30 to C40, which include botryococcene, squalene and methylated squalenes, are suitable for producing liquid transport fuels and petrochemical alternatives. However, commercial-scale production of the alga is hampered by its slow growth rate. Other fast-growing microalgae and terrestrial plants do not accumulate triterpene hydrocarbons, because squalene, a key metabolite of the plant’s triterpene pathway, is rapidly converted to downstream products. Squalene (C30H50) is the starting molecule for all triterpenoids…
Related Content

Mettler Toledo

Reduce Explosion Risk in 2 Seconds with In Situ Oxygen Analysis

Changing to GPro® 500 in situ TDL sensors has reduced measurement time from 20 seconds to 2, and almost eliminated analyzer maintenance.

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
Reduce Explosion Risk in 2 Seconds with In Situ Oxygen Analysis
Tunable Diode Laser Spectroscopy in Critical Applications
Non-Contacting Gas Sensors Minimize the Risk of Corrosion to Plant Equipment.
5 ways to Optimize Production of Polymers and Intermediate Petrochemicals
7 Ways to Achieve Process Safety in Chemical Production

View More

Live chat by BoldChat