I D
× COMMENTARY
Digitalization Game ChangersGame Changers
The technologies associated with the Industrial Internet of Things, and…
COVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More
Chemical Engineering MagazineChementator Briefs
ANG fueling station Ingevity (North Charleston, S.C.; www.ingevity.com) has completed…
BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILESOLIDS PROCESSINGEQUIPMENT & SERVICESFOCUSNEW PRODUCTS + Show More SHOW PREVIEWS

Comment

A methane fuel cell that operates at lower temperatures

By Scott Jenkins |

Existing methane fuel cells typically require high (750–800°C) temperatures to activate methane in a separate methane reformer that creates hydrogen gas. Now researchers at the Georgia Institute of Technology (Georgia Tech; Atlanta; www.gatech.edu) have developed a solid oxide fuel cell (SOFC) design that eliminates the need for a methane reformer and requires temperatures of only 500°C. The cost savings enabled by the lower-temperature operation could make this type of fuel cell, which uses no platinum, commercially viable for several applications, including distributed power generation and automobile engines. “In our fuel cell, we integrated thermal catalysis and electrocatalysis at 500°C,” explains Meilin Liu, Georgia Tech professor and lead researcher. “Methane is first reformed to CO and H2 within the fuel cell, and then the H2 and CO are electrochemically oxidized to H2O and CO2 on the electrode.” The lower-temperature fuel cell would allow ordinary stainless steel, rather than exotic materials, to be used for the interconnectors that link the cells into a stack. “Above 750°C, no metal can withstand the temperature without oxidation,” Liu says, so the materials needed are “expensive and fragile, and would…
Related Content
A fluorine-free membrane for fuel cells
Polymer-electrolyte fuel cells (PEFCs) are promising devices for clean power generation in automotive, stationary and portable applications. Up to now,…
A very efficient SOFC
Hitachi Zosen Corp. (HITZ, Osaka and Tokyo, Japan; www.hitachizosen.co.jp) has installed a solid-oxide fuel cell (SOFC) demonstration unit at Osaka…

Mettler Toledo

Tunable Diode Laser Spectroscopy in Critical Applications

Accurate and continuous O2 determination plays a pivotal role in achieving safety and process reliability in a wide range of manufacturing processes. Harsh process conditions and maintenance requirements of sampling and conditioning systems can present…

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
Reduce Explosion Risk in 2 Seconds with In Situ Oxygen Analysis
Tunable Diode Laser Spectroscopy in Critical Applications
Non-Contacting Gas Sensors Minimize the Risk of Corrosion to Plant Equipment.
5 ways to Optimize Production of Polymers and Intermediate Petrochemicals
7 Ways to Achieve Process Safety in Chemical Production

View More

Live chat by BoldChat