I D
× COMMENTARYEDITOR'S PAGECOVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILEENGINEERING PRACTICEEQUIPMENT & SERVICESAPPLIED TECHNOLOGIESFOCUSNEW PRODUCTS + Show More

Comment uncategorized

A microwave-plasma process that efficiently makes hydrogen and acetylene

By Mary Page Bailey |

A new modular process based on microwave-plasma reactors aims to efficiently convert natural gas into acetylene and H2 without combustion or CO2 formation. Transform Materials LLC (Riviera Beach, Fla.; www.transformmaterials.com) has designed a reactor that overcomes some of the previous limitations of microwave-plasma-based methane processing, such as low single-pass conversion and low selectivity. “Our technology is singularly high in both conversion and selectivity. In addition, our process consumes approximately an order of magnitude less energy to process a fixed amount of methane,” explains David Soane, Transform Materials CEO. Furthermore, the high single-pass conversion rates allow for a more compact reactor and overall simpler operations. “High-selectivity transformation into the desired coproducts of acetylene and hydrogen means that the requisite downstream separation process is straightforward,” says Soane. He adds that the company has also made significant breakthroughs in removing minor amounts of byproduct impurities from the reactor effluent. “Our compact system favors distributed manufacturing. Future commercial plants can be installed where the natural gas feed exists and where there is local demand for…
Related Content

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
How to Select a Pump for Industrial Applications
Temperature Instruments Improve Operations
Steel Belt Units for Medical Membranes
Upstream Oil & Gas: Automation intelligence from wellhead to distribution
Video - CoriolisMaster

View More