I D
× COMMENTARYCOVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More
Chemical Engineering MagazineChementator Briefs
PDH catalyst Last month, Clariant's Catalyst business (Munich, Germany; www.clariant.com)…
BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILESOLIDS PROCESSINGENGINEERING PRACTICEEQUIPMENT & SERVICESFOCUS
Focus on Pumps
Self-priming, liquid-ring pumps enable hygienic operation The CFS AS/ASH Series…
NEW PRODUCTS + Show More

Comment

A new process to make olefins from syngas

By Paul Grad |

Light olefins, such as ethylene and propylene, are primarily made by the catalytic cracking of crude oil. Alternatively, two other methods were developed during the time of high oil prices, both of which convert synthesis gas (syngas) to olefins: the methanol-to-olefins (MTO) process, which uses zeolite catalysts; and the (Fischer-Tropsch-to-olefins) (FTO) process, which uses metal catalysts. Although much progress has been made in direct syngas conversion to light olefins via Fischer-Tropsch synthesis, the wide product distribution remains a challenge, with a theoretical limit of only 58% for C2–C4 hydrocarbons. Now, professors Xiulian Pan and Xinhe Bao of the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences (Dalian, China; www.dicp.ac.cn) have developed a third alternative, called the OX-ZEO (oxide-zeolite) technique. With this method, they report a C2=–C4= selectivity of 80% and C2–C4 94% at carbon monoxide conversion of 17%. The catalyst system consists of the partially reduced metal-oxide surface catalyst ZnCrOx, which activates CO and H2, and C-C coupling and is subsequently manipulated within the confined acidic pores of zeolites. A zeolite called MSAPO is used to convert syngas to ketene (CH2CO),…
Related Content
The Spread of Nitrogen Fertilizers
As price margins tighten, ammonia and urea producers are diversifying their products, while new catalysts and process improvements boost capacities…

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
Quadruple Sensor Lifetime with a Retractable Housing
Minimizing Explosion Risk Where Other Solutions Cannot
Minimizing Corrosion with Fast, Robust Gas Analysis
Lower Measurement Point Costs with Automatic pH Sensor Cleaning
Reduce the Risk of Corrosion in Fertilizer Production

View More

Live chat by BoldChat