I D
× COMMENTARYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILEENGINEERING PRACTICEENVIRONMENTAL MANAGEREQUIPMENT & SERVICESFOCUS
Focus on Valves
Safe combustible-dust-explosion isolation Isolation is essential to protect adjoining system…
NEW PRODUCTS + Show More

Comment PDF Solids Handling

Facts at your Fingertips: Pneumatic Conveying Challenges

By Scott Jenkins |

Among the key benefits offered by pneumatically conveying bulk solids is the ability to route materials around obstructions in the plant using bends in the pipeline. However, these changes in direction involve a considerable number of particle impacts on the bend wall as the particles make the turns. This one-page reference reviews the potential problems that can arise from particle impacts in pipe bends of dilute-phase pneumatic-conveying systems. Bend geometry Pipe bends can take a variety of different geometries, which can have a significant influence on particle impact angle. Basic long-radius bends are the most commonly used because they provide the most gradual change in direction for solids, and because the angle of impact on the pipe wall is relatively small, which helps to minimize the risk of attrition or erosion. Common-radius bends are made by bending standard tubes or pipes (Figure). The radius of curvature, RB, may range from 1 to 24 times the tube diameter, D. Common-radius bends can be loosely classified as follows: Elbow (RB /D = 1 to 2.5); Short radius RB /D = 3 to 7; Long-radius (RB /D = 8 to 14; Long sweep (RB /D = 15 to 24). Figure. Flow in a standard, long-radius bend is illustrated here, with typical flow…
Related Content
Controlling Dust through Pelletizing
Tumble-growth agglomeration can reduce dust in solids-handling processes. Here’s how it works Handling and processing bulk solids appears in nearly…

Andritz

mproving chemical production processes with IIoT and AI technologies

How new control and monitoring mechanisms add value to filtration processes for a wide range of chemical applications - A paper about Filter presses supported by Industrial Internet of Things (IIoT) and Artificial Intelligence (AI)-technologies.

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
Improving chemical production processes with IIoT and AI technologies
New filtration technology for highly corrosive media
PTA production: Lowering OPEX without compromising on quality
Sure that zero means zero in your zero-liquid discharge (ZLD) process?
How separation processes profit from Industrial Internet of Things (IIoT) solutions

View More

Live chat by BoldChat