I D
× COMMENTARYEDITOR'S PAGECOVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More
Chemical Engineering MagazineChementator Briefs
Nanofiltration Toray Industries, Inc. (Tokyo, Japan; www.toray.com) has created what…
BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILEEQUIPMENT & SERVICESFOCUSNEW PRODUCTS + Show More SHOW PREVIEWS

Comment PDF Processing & Handling

Technology Profile: Polyethylene Furanoate Production

By Intratec Solutions |

This column is based on “Polyethylene Furanoate Production — Cost Analysis,” a report published by Intratec. It can be found at: www.intratec.us/analysis/polyethylene-furanoate-production-cost. Polyethylene furanoate (PEF) is a polymer synthesized from the copolymerization of 2,5-furandicarboxylic acid (FDCA) with monoethylene glycol (MEG). Since both monomers can be obtained from biomass starting material, and the resulting PEF is 100% recyclable, PEF is considered a bio-based analogue to polyethylene terephthalate (PET). Also, PEF production is thought to have the potential to reduce greenhouse gas emissions compared to the production of PET. FIGURE 1. The diagram shows a polyethylene furanoateproduction process[/caption] The process Strong parallels are reported in the literature between the production of PET and PEF, to the point that existing PET assets may be used for PEF production. FDCA and MEG are polymerized in two steps (Figure 1) yielding bottle-grade PEF. Melt-phase polymerization. MEG and FDCA are initially fed to the paste system, which prepares a uniform feed slurry batch-wise for melt-polymerization downstream. The mixture then passes through two agitated and jacketed reactors, in which esterification takes…
Related Content

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
How separation processes profit from Industrial Internet of Things (IIoT) solutions
Up to 80% increased production rates in plastic recycling
Higher throughput and purity in sodium bicarbonate production with up to 15% less energy consumption
Help feeding nations with chemical filtering technologies
Not at the forefront of Industry 4.0?

View More

Live chat by BoldChat