ID
× COMMENTARYCOVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILEENGINEERING PRACTICEEQUIPMENT & SERVICESFOCUSNEW PRODUCTS + Show More

Comment

Progress toward using ammonia as a hydrogen carrier for fuel cells

By Tetsuo Satoh |

In order for ammonia to serve as a hydrogen carrier, it is necessary to develop separation techniques that can reliably recover H2 from the decomposition of NH3 with sufficient purity for operating proton-exchange membrane (PEM) fuel cells. A step in this direction has been achieved by a Japanese collaboration lead by Yoshitsugu Kojima at Hiroshima University (Hiroshima; www.hiroshima-u.ac.jp), in collaboration with Taiyo Nippon Sanso Corp., Toyota Motor Corp. and Showa Denko K.K. The researchers, with support from a cross-ministerial strategic innovation program (SIP), named “Energy Carrier,” have developed components needed to decompose NH3 and recover high-purity H2.

Using a ruthenium catalyst supported on MgO, NH3 is decomposed in a micro-channel cracker into H2 and N2 at 500°C and 0.1 MPa, with a 99.8% conversion efficiency. The remaining NH3 concentration is reduced from 1,000 parts per million (ppm) to below 0.02 ppm using a combination of pressure-swing adsorption and a zeolite-packed absorption column, to produce H2 with 99.98% purity (NH3 <0.02 ppm, N2 <10 ppm). A net H2 recovery rate of 90% was achieved. By utilizing the heat from the cracking, a net energy efficiency of 80% was observed.

The researchers believe the technology can be scaled up from the present 10-Nm3/h scale to 300–1,000 Nm3/h for commercial applications, such as fuel-cell-powered cars and forklifts.

Related Content

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
Non-Contacting Gas Sensors Minimize the Risk of Corrosion to Plant Equipment.
5 ways to Optimize Production of Polymers and Intermediate Petrochemicals
7 Ways to Achieve Process Safety in Chemical Production
Five Reasons Why Chemical Companies Are Switching to Tunable Diode Laser Analyzer Technology
Simplify sensor handling and maintenance with ISM

View More

Live chat by BoldChat