I D
× COMMENTARYEDITOR'S PAGECOVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More
Chemical Engineering MagazineChementator Briefs
Nanofiltration Toray Industries, Inc. (Tokyo, Japan; www.toray.com) has created what…
BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILEEQUIPMENT & SERVICESFOCUSNEW PRODUCTS + Show More SHOW PREVIEWS

Comment PDF

Scaleup for a new process to make Bio-Alkylate

By Gerald Ondrey |

Next spring, Exelus, Inc. (Livingston, N.J.; www.exelusinc.com) plans to pilot a new process that converts crude bioethanol (beer) into Bio-Alkylate — a fuel that is chemically identical to gasoline. New Renewable Fuel Standards (RFS) of the U.S. Environmental Protection Agency (EPA; Washington, D.C.) call for increasing the amount of ethanol that can be added to gasoline to 15 vol.% (so-called E15 gasoline), which would require significant engine modifications. “This technology eliminates the limitations of using bio-ethanol as a fuel by allowing gasoline blends up to E50 without requiring any changes to cars or fuelling stations or compromising mpg”, says Exelus president Mitrajit Mukherjee.  In the new process (flowsheet), filtered beer is first vaporized in a stripping column, generating wet ethanol vapor. The vapor is heated further and dehydrated into ethylene over a solid-acid catalyst. Upon cooling, the water and ethylene are readily phase separated. Crude ethylene is then directly alkylated with excess isobutane over an engineered, zeolite catalyst producing Bio-Alkylate. Unreacted isobutane is distilled and recycled. In laboratory trials, the in-house-developed catalyst showed exceptional activity…
Related Content
A less expensive way to make graphene
A team from RMIT University (Melbourne, Australia; www.rmit.edu.au) and the National Institute of Technology, Warangal (Warangal, India; www.nitw.ac.in) has developed…

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
How separation processes profit from Industrial Internet of Things (IIoT) solutions
Up to 80% increased production rates in plastic recycling
Higher throughput and purity in sodium bicarbonate production with up to 15% less energy consumption
Help feeding nations with chemical filtering technologies
Not at the forefront of Industry 4.0?

View More

Live chat by BoldChat