I D
× COMMENTARYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More
Chemical Engineering MagazineChementator Briefs
Solar desalination Researchers at Rice University (Houston, Tex.; www.rice.edu) working…
BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILESOLIDS PROCESSINGEQUIPMENT & SERVICESFOCUSNEW PRODUCTS + Show More

Comment PDF

A new catalyst reduces SO2 emissions from H2SO4 plants

By Gerald Ondrey |

At last month’s Sulfur 2010 Conference (November 1–4; Prague, Czech Republic), Haldor Topsøe A/S (Lyngby, Denmark; www.topsoe.com) introduced its latest sulfuric-acid catalyst, VK-701 Leap5, which promises to help operators of sulfuric acid plants meet more-stringent SO2-emission limits. When used in the final pass of single absorption H2SO4 plants, VK-701 Leap5 reduces SO2 emissions by up to 40% compared to existing catalysts. The new catalyst also makes it possible to reach down to 50 ppm in existing 3+1 double-absorption plants or to design double-absorption plants with SO2 emissions as low as 20–50 ppm SO2, says Lene Hansen, general manager — sulfuric acid, catalyst division. Conventional sulfuric-acid catalysts are based on vanadium oxides promoted with alkali-metal sulfates on an inactive, porous silica support. In these so-called supported liquid phase (SLP) catalysts, the oxidation of SO2 occurs as a homogeneous reaction in a liquid film covering the internal surface of the supported material. Although the detailed reaction mechanism is not entirely known, there is evidence that only the oxidation state V+5 is active. With Leap5 technology, Topsøe has substantially increased the amount…
Related Content
Chementator Briefs
Solar desalination Researchers at Rice University (Houston, Tex.; www.rice.edu) working on nanophotonics-enabled solar membrane distillation (NESMD) have found that concentrating…

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
Quadruple Sensor Lifetime with a Retractable Housing
Minimizing Explosion Risk Where Other Solutions Cannot
Minimizing Corrosion with Fast, Robust Gas Analysis
Lower Measurement Point Costs with Automatic pH Sensor Cleaning
Reduce the Risk of Corrosion in Fertilizer Production

View More

Live chat by BoldChat