Removing per- and polyfluoralkyl substances (PFAS) from surface and groundwater has become an environmental and public health imperative, but methods for doing so are often complicated and costly, and may not destroy the molecules. Researchers at the University of British…
Acrylic acid, a commodity chemical used widely in superabsorbent polymers, paints, coatings, adhesives and more, is typically produced from fossil-based propylene at relatively high temperatures. As part of an initiative supported by the U.S. Dept. of Defense, funding was recently…
Plant Watch BASF completes superabsorbent polymers expansion project in Texas October 16, 2024 — BASF SE (Ludwigshafen, Germany; www.basf.com) announced that its petrochemicals division has completed production upgrades for superabsorbent polymers (SAP) after a $19.2-million investment in its Freeport, Tex.…
Tire recycling The Mitsubishi Chemical Group (MCG; Tokyo, Japan; www.mcgc.com) has demonstrated chemical recycling of end-of-life tires (ELTs) using the coke ovens at its Kagawa Plant (Sakaide City, Kagawa Prefecture). The company is able to feed crushed ELTs as raw…
A significant contributor to the cost, energy consumption and carbon footprint of silver production is in the refining steps to remove, recover and recycle zinc from Parkes Crust silver-zinc intermetallic compounds. A fundamental redesign of the silver process to improve…
Facility monitoring, LED lighting and low-impact cleaners help reduce carbon footprint at chemical process industries (CPI) facilities It is not always possible to refine a process to help reduce a facility’s carbon footprint; however, embracing some newer trends in more…
A significant portion of the energy and cost requirements in the production of lithium-ion batteries stems from the cost of converting lithium sulfate or lithium chloride into lithium hydroxide monohydrate (LHM) of sufficient purity for battery use. Noram Electrolysis Systems,…
Seemingly small component changes can make a large impact on the productivity of electrochemistry systems, such as electrolyzers used for producing “green” hydrogen. For example, a new coating technology developed by Oxford nanoSystems Ltd. (OnS; Abingdon, U.K.; www.oxfordnanosystems.com), when applied…
As wind energy takes a prominent role in the energy transition, researchers at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL: www.nrel.gov) have focused on manufacturing sustainable turbine blades that can be made from bio-derivable resources and then…
Metal-organic frameworks (MOFs) have shown great potential for a number of applications, including as carbon-capture materials, but their use commercially has been limited by production methods, which are generally expensive batch processes. With the development of a continuous process for…