Printed electronics made possible by this carbon-nanotube-production process
By Scott Jenkins |
A recently commercialized method for growing single-walled carbon nanotubes (SWCNs) in large quantities enables their use in a downstream process for depositing semiconducting inks onto flexible surfaces.
Southwest NanoTechnologies Inc. (Norman, Okla.; www.swentnano.com) has developed a scalable technique (CoMoCAT process) in which carbon monoxide is decomposed into carbon and CO2 at 700–950ºC in a fluidized bed reactor. Growth of the nanotubes depends on a specialized proprietary cobalt and molybdenum catalyst that gives rise to high selectivity.
CEO David Arthur says the process is able to generate SWCNs that are semiconducting-enriched (>90% versus 66% industry average) or metallic-enriched (>50% versus 33% industry average). The method produces nanotubes with a narrow distribution of diameters in the range of 0.8 to 1.5 nm, Arthur adds, and lengths typically 1,000 times the diameter.
In a collaboration with Chasm Technologies Inc. (Canton, Mass.; www.chasmtek.com), Southwest NanoTechnologies has incorporated its nanotubes into an ink formulation that allows them to be printed as thin films onto flexible surfaces using commercially available printing processes. A carbon nanotube paste is mixed with an evaporating…
Chemical Engineering publishes FREE eletters that bring our original content to our readers
in an easily accessible email format about once a week.
Subscribe Now