I D
× COMMENTARYCOVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More
Chemical Engineering MagazineChementator Briefs
PDH catalyst Last month, Clariant's Catalyst business (Munich, Germany; www.clariant.com)…
BUSINESS NEWSTECHNICAL & PRACTICALFEATURE REPORTFACTS AT YOUR FINGERTIPSTECHNOLOGY PROFILESOLIDS PROCESSINGENGINEERING PRACTICEEQUIPMENT & SERVICESFOCUS
Focus on Pumps
Self-priming, liquid-ring pumps enable hygienic operation The CFS AS/ASH Series…
NEW PRODUCTS + Show More

Comment Water Treatment

Selective removal of micropollutants

By Paul Grad |

Micropollutants, such as antibiotics and flame retardants, can pose a health threat to animals and humans, even in tiny concentrations. Current methods to remove micropollutants from the environment include adsorption onto powdered activated carbon, which is then separated from the wastewater and burned. This process can be costly because the organic matter present in the wastewater is also adsorbed onto the powder, and a lot of the activated carbon is consumed in the treatment process. Another method, ozone treatment, breaks down the micropollutants through oxidation, but this can produce harmful byproducts such as formaldehyde. To avoid those pitfalls, scientists from Dalian University of Technology (Dalian, China; www.dlut.edu.cn) developed a two-step method to target those micropollutants. In the first step, insoluble polymers made of cyclodextrins cross-linked with epichlorohydrin are used as adsorbents. Cyclodextrins, derived from starch, selectively trap small hydrophobic organic compounds. The doughnut-shaped cyclodextrins have a hydrophobic cavity than can encapsulate micropollutants while excluding the larger organic matter that can clog the activated carbon. In the second step, potassium permanganate is used to degrade the…
Related Content

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
Quadruple Sensor Lifetime with a Retractable Housing
Minimizing Explosion Risk Where Other Solutions Cannot
Minimizing Corrosion with Fast, Robust Gas Analysis
Lower Measurement Point Costs with Automatic pH Sensor Cleaning
Reduce the Risk of Corrosion in Fertilizer Production

View More

Live chat by BoldChat