New PDH capability A new catalyst for propane dehydrogenation (PDH) that does not include precious metals has been developed by KBR Inc. (Houston, Tex.; www.kbr.com). The new catalyst is incorporated into KBR’s new PDH technology, known as K-PRO, which was…
From process and materials development to maintenance and logistics, artificial intelligence (AI) is emerging as a transformative force across the chemical process industries As in many other sectors, artificial intelligence (AI) technologies are beginning to emerge in the chemical process…
Queensland Pacific Metals (Brisbane, Australia), a subsidiary of Pure Minerals (Perth, Australia; www.pureminerals.com.au) will use Direct Nickel Projects’ (Perth, Australia) proprietary technology to process New Caledonian nickel and cobalt ore, following favorable test results. Core Metallurgy (Brisbane, Australia) has assessed…
Using the hierarchy of controls can help guide housekeeping and safety programs to better protect employees and facilities There is a close link between safety and housekeeping for all manufacturers, but facilities that store, handle or process chemicals have an…
The research group of professor Osamu Ishitani at the Tokyo Institute of Technology (Japan; www.titech.ac.jp), in collaboration with the Institute of Advanced Industrial Science and Technology (AIST), has successfully demonstrated highly efficient, selective and durable photocatalytic CO2-reduction systems that only…
Last month, Sunfire GmbH (Dresden, Germany; www.sunfire.de) reported the successful startup and test run (more than 500 h) of a high-temperature, co-electrolysis system at its Dresden site since November 2018. The technology, called Sunfire-Synlink, is based on solid-oxide cells and…
Plant Watch Lotte BP Chemical to expand petrochemicals production in Ulsan January 14, 2019 — BP plc (London; www.bp.com) and Lotte Chemical Corp. (Seoul, South Korea; www.lottechem.com) have agreed to significantly expand production capacity at their joint venture (JV), Lotte…
Today, olefins are mainly made either by naphtha cracking or by the catalytic conversion of dimethyl ether (DME), which is in-situ made from synthesis-gas- (syngas) derived methanol (methanol-to-olefin processes). Both naphtha cracking and syngas production (from steam-methane reforming; SMR) require…
Researchers from Case Western Reserve University (CWR; Cleveland, Ohio; www.case.edu) have shown that a hybrid electrolytic system using a gaseous plasma electrode can produce ammonia from water and nitrogen at ambient temperature and pressure — without any catalytic material surface.…
Existing methane fuel cells typically require high (750–800°C) temperatures to activate methane in a separate methane reformer that creates hydrogen gas. Now researchers at the Georgia Institute of Technology (Georgia Tech; Atlanta; www.gatech.edu) have developed a solid oxide fuel cell…